4008063323.net

Creating Interactive Plotly Graphs with 95% Confidence Intervals

Written on

Chapter 1: Introduction to Plotly Graphs

Generating a Plotly graph with a 95% confidence interval (CI) in Python is quite simple. This guide will walk you through the process step-by-step.

Section 1.1: Prerequisites

To begin, ensure you have the necessary libraries installed. We will utilize the pandas and Plotly graph object libraries. Plotly is a powerful open-source tool for crafting interactive, high-quality graphs.

# Install pandas

pip install pandas

# or via conda

conda install -c anaconda pandas

# Install Plotly

pip install plotly

# or via conda

conda install -c plotly plotly

Next, import the required libraries:

import pandas as pd

import plotly.graph_objects as go

Section 1.2: Data Generation

In this example, we will create our own dataset for plotting. You can substitute this with your actual data. We will create three lists:

  1. X-axis data points: Years from 2001 to 2024.
  2. Y-axis data points: 25 data points representing the squares of numbers from 1 to 24.
  3. Standard Error (SE): For this example, we will assume the SE is one-fourth of the respective data point. Note that this is illustrative; proper statistical methods should be used to estimate SE.

def square(lst):

return [i ** 2 for i in lst]

def se(lst):

return [i / 4 for i in lst]

year = list(range(2001, 2025))

lst1 = square(list(range(1, 25)))

lst_se = se(lst1)

Section 1.3: Data Formatting for Plotting

The following function formats our lists (dates, point estimates, and standard errors). These lists are organized into a pandas DataFrame, and two extra columns for upper and lower confidence limits are computed. The function then outputs three lists:

def format_data(date, estimates, estimates_se):

cols = {'Date': date, 'Estimates': estimates, 'SE': estimates_se}

# Calculate upper and lower confidence limits

df = pd.DataFrame(cols)

df['LCL'] = df['Estimates'] - 1.96 * df['SE']

df['UCL'] = df['Estimates'] + 1.96 * df['SE']

periods = list(df['Date'])

periods.sort()

period_sorted = periods.copy()

periods.sort(reverse=True)

# Append sorted dates for plotting the confidence band

for i in range(len(periods)):

period_sorted.append(periods[i])

periods = period_sorted.copy()

LCL = df['LCL'].tolist()

UCL = df['UCL'].tolist()

UCL.reverse()

for i in UCL:

LCL.append(i)

CI = LCL.copy()

return periods, estimates, CI

Section 1.4: Creating the Plotly Graph

The Plotly library offers numerous options for graph creation. The function below constructs a Plotly graph utilizing the plotly.graph_objects.Figure class and the add_trace method. Here, we add the point estimates and the 95% confidence interval.

def plot1(y1, x1, CI_estimates, ci_dates, title, y_axis_label, x_axis_label, show_legend=True):

# Initialize figure

fig = go.Figure()

# Add Trace with point estimates

fig.add_trace(

go.Scatter(x=x1,

y=y1,

mode='lines',

hoverinfo='y+x',

opacity=0.5,

line=dict(color='blue', width=3),

name='Name of Line',

visible=True,

legendgroup="legendgroup1")

)

# Add Trace for the 95% confidence band

fig.add_trace(

go.Scatter(x=ci_dates,

y=CI_estimates,

mode='lines',

showlegend=False,

hoverinfo='y',

line=dict(color=None, width=0.10),

name='95% Confidence interval',

fill="toself",

legendgroup="legendgroup1",

fillcolor='lightblue',

opacity=0.25,

visible=True)

)

# Update layout for better aesthetics

fig.update_layout(

title_text=title,

legend_orientation="v",

font_size=14,

font={'family':'Calibri'},

title_x=0.5,

showlegend=show_legend,

xaxis_title=x_axis_label,

yaxis_title=y_axis_label,

yaxis={'linecolor': 'black', 'fixedrange': True, 'tickmode': 'auto', 'ticks': "outside", "showgrid": False},

xaxis={'linecolor': 'black', 'fixedrange': True, 'tickmode': 'array', "showgrid": False},

hovermode='x unified',

paper_bgcolor='white',

plot_bgcolor='white',

margin={'t': 125},

legend=dict(y=.00, x=0.77, traceorder='reversed'),

xaxis_range=[min(x1), max(x1)]

)

fig.update_xaxes(title_font_family="Calibri")

return fig.show()

Chapter 2: Visualizing the Graph

Now, we will run the format_data function using the generated data from the previous step as inputs. We will then use the formatted lists in the plot1 function.

my_formatted_data = format_data(date=year, estimates=lst1, estimates_se=lst_se)

plot1(y1=my_formatted_data[1],

x1=my_formatted_data[0],

CI_estimates=my_formatted_data[2],

ci_dates=year,

title='My Title Subtitle',

y_axis_label='Y-Axis Label',

x_axis_label='X-Axis Label',

show_legend=False)

... and there you have it!

These functions can be easily modified to include multiple lines with their corresponding 95% confidence intervals. If you have any questions, feel free to leave a comment.

Concluding Remarks

Plotly empowers users to create visually appealing and informative graphs effortlessly. I hope this guide has clarified how to generate a Plotly graph with a 95% confidence interval using Python.

Thank you for reading! If you enjoyed this content, please follow and support my work by hitting the clap button.

For more insights, visit PlainEnglish.io. Join our free weekly newsletter and connect with us on Twitter, LinkedIn, YouTube, and Discord. If you're looking to expand your software startup, check out Circuit.

The first video provides a detailed explanation of computing and plotting estimated 95% confidence intervals in Python.

The second video demonstrates how to use Plotly Express to create professional graphs in just a few minutes!

Share the page:

Twitter Facebook Reddit LinkIn

-----------------------

Recent Post:

Exploring the Unbelievable World of Hybrid Animals

Discover the fascinating realm of hybrid animals, their creation, and the ethical concerns surrounding scientific experimentation.

Navigating Life's Decisions: Lessons from Russian Roulette

Explore how the concept of ergodicity influences decision-making in life and business through the metaphor of Russian Roulette.

Big Tech Faces Unprecedented Challenges Under Biden's Appointments

Biden's latest antitrust appointments signal a potential overhaul of policies affecting Big Tech, raising concerns across the industry.

# A Heartfelt Reflection on Lost Connections and Dreams

A poignant exploration of vulnerability in dating, reflecting on the pain of unrequited feelings and the search for true connection.

Transforming Failures into Opportunities: A Path to Growth

Discover how to view failures as growth opportunities and learn to bounce back quickly.

The Transformative Power of Edge Computing and Cloud in the 5G Era

Discover how the synergy of edge computing and cloud services is reshaping various industries in the era of 5G technology.

Beware of the Snakes: Understanding Deceptive Intentions

Explore the hidden dangers of deceptive friendships and the importance of discernment.

The Unseen Roots of Racism: Examining Genetic and Cultural Factors

Exploring the intersection of genetics and cultural beliefs in shaping racism in America.